

1

Access Control Lists

ACL (Access Control List) is a filtering mechanism at the L3, partly L4 layer. Standard ACL filters by IP

addresses, extended ACL can also filter by ports and protocols.

Each ACL is identified by its number (numbered ACL) or name (named ACL).

Dedicated ACL number ranges for numbered ACLs:

1–99 or 1300–1399 standard ACL

100–199 or 2000–2699 extended ACL

remaining AppleTalk, IPX, extended IPX,… (not used)

So I can create a standard ACL specified by number or name, and an extended one as well.

We create the ACL first, and then deploy it on an interface and direction (i.e., we filter on a specific

interface, in the inbound or outbound direction). Also, a special type of ACL is an ACL to protect VTY lines.

An ACL is a sequence of rules (also numbered) – Access Control Entries (ACE), and a packet on a given

interface and in a given direction must pass through this sequence. The packet either matches or does not

match what the rule specifies, and if it does, then the rule determines what happens to the packet:

 if the packet satisfies a certain property (for example, the IP address belongs to a certain network),

it can continue on its way (permit),

 if the packet meets a certain property, it should be discarded (deny).

The following situations can occur:

 the packet does not match the condition in the rule, so it goes to the next rule in the ACL,

 the packet matches the condition, it is either sent over the interface (permit) or discarded (deny),

and it does not continue in the ACL,

 the packet goes through all the rules in the ACL sequentially and none of them match the condition

(so the first bullet in this list always occurs), then it depends, at the end we usually have an implicit

deny any rule, so it will be dropped.

ACL rules usually contain IP addresses to which we need to add a mask. Cisco uses wildcard masks for ACLs,

i.e. inverse masks. A wildcard mask is created by inverting the 0 and 1 in a regular (binary) mask. A wildcard

mask doesn't necessarily have to have only zeros at the beginning and only ones at the end, we simply

specify that in an IP address at a given binary position either the digit prescribed by that address must be

present, or conversely it doesn't matter if the packet at that IP address has a 0 or a 1 at that position.

If I want to put a specific unicast IPv4 address (one, no network) in an ACL rule, the regular mask would be

255.255.255.255, but the wildcard mask would be 0.0.0.0. Example:

172.16.0.12 0.0.0.0

If I want to specify this subnet: 172.16.0.0 255.255.0.0, it is:

172.16.0.0 0.0.255.255

If in the 10.0.0.0/8 network I want to capture in the ACL all packets with an IP address with a fixed number

in the second octet:

10.96.0.0 0.0.255.255

Alternatively, only some bits of the octet are fixed:

10.96.0.0 0.15.255.255

2

The number 15 is binary 0000 1111, after inverting we get 1111 0000, so the upper half of the octet must

be according to the formula. The number 96 is binary 0110 0000, which means that the upper half of the

second octet must be 0110, the other half can be any value. For which of the following addresses would

such a rule in an ACL be applied?

10.96.52.4
10.105.0.4
10.128.22.1
10.112.150.32

What if we mix it up? The rule would specify, for example, this:

10.96.32.0 0.0.15.223

What does that mean? Will the address 10.105.32.8 correspond to this regulation?

For a unicast address, we can specify the word host instead of the wildcard mask 0.0.0.0.

A standard numbered ACL is created as follows:

access-list 10 permit 10.96.0.0 0.0.255.255 ; source IP with the wildcard mask
access-list 10 deny host 10.96.100.84 ; host instead of the wildcard mask 0.0.0.0
access-list 10 deny any ; not necessary, but useful for logging purposes
access-list 10 permit any ; if we want everything else to go through

Possible actions:

permit, deny, remark

An ACL contains one or more ACEs, each with its own number.

To create a named ACL with two ACE entries (traditionally, the name is being capitalized):

ip access-list standard NO_ACCESS
 deny host 10.96.100.84
 permit 10.96.0.0 0.0.255.255
 exit

Deployment at the interface:

interface f0/0
 ip access-group 10 out ; for outgoing traffic
 ip access-group 20 in ; for incoming traffic

Verification:

sh access-lists
sh ip access-list
sh access-list 10
sh ip int f0/0
sh run

Task:

On the web, there is a pre-prepared PKT file for standard ACLs. Download it and open it. Review all

interfaces (including loopbacks) and networks. Verify that there are really no ACLs created on the routers.

Verify that routing is working (which routing protocol is used?). Verify that the computers are reachable to

each other.

Create a standard numbered ACL (No. 1) that allows traffic from the 192.168.30.0/24 and 192.168.20.0/24

networks to the 192.168.30.0/24 network, and disallow everything else leading to this network. Deploy the

ACL on the appropriate interface. Remember, always deploy a standard ACL as close to the target as

possible.

Use the appropriate show commands to view the ACL that you created and how it is deployed on the

interface.

3

Verify that the ACL actually works – for both enabled and disabled networks. You can also use extended

ping.

Next, create a named standard ACL, ACL_CONFIG, which allows traffic from the 192.168.40.0/24 network to

the 192.168.10.0/24 network, and also allows PC-C (192.168.30.3) access to this network. Deploy on the

appropriate device and interface.

Again, review the ACL you created and also the location where it is created.

Verify that the ACL works on both enabled and disabled connections. Also view the statistics using show

access-lists.

Modification of Existing Standard ACLs

There are two ways to modify an existing ACL:

 I can create the whole ACL in a text editor (copy it from the console, modify it), remove the original

one (no access list..., no ip access-list...) and copy it during the re-creation, because it is possible to

copy to the terminal emulator),

 I use the commands to add new ACEs, I need to know which ACE numbers are free in the list.

For a named ACL:

sh access-lists ; I'll look into which numbers are available (free)
ip access-list standard název
 30 permit address inv-mask
 40 deny any
 end

The ACL remains deployed on the interface even after the ACL is deleted or modified, so we don't have to

re-deploy it on the interface after modification.

Note that although the deny any entry is valid by default, when we place it directly in the list, we can view

related statistics.

Task:

Make this modification: devices from the network 209.165.200.224/27 should have access to

192.168.10.0/24, and the deny any ACE should be added to the end.

Test if the added items work as they should.

4

ACL to protect VTY lines

ACLs can also be deployed on VTY lines. This determines from where access to device administration will

work.

ACLs are created in the same way as above, but the deployment to the links is slightly different:

line vty 0 4 ; or line vty 0 15, according to the number of VTY lines
 access-class ACL-name-or-number in

Task:

Simply enable telnet access on the R3 router (yes, we wouldn't normally do this, it's just for testing

purposes here). Make sure it works from PC-A.

On R3, create a numbered ACL with the number 2 to allow access from address 192.168.10.3, and then

access from addresses in the range 192.168.10.4 to .7, using a suitable inverse mask for the entire range.

It can be as follows:

access-list 2 permit host 192.168.10.3
access-list 2 permit 192.168.10.4 0.0.0.3
access-list 2 deny any

Deploy this ACL on the VTY lines on the router.

Verify that the ACL you created is working properly. Change the PC-A address to something outside the

range allowed in the ACL and test if it passes.

On R3, view the ACL statistics (in the show ip access-list command) and check the filtering result.

On R3, configure SSH (add a suitably named user with a password) and change VTY access to SSH only. Test

again.

VTY can also be used to protect lists on individual interfaces. But then we would have to deploy an ACL on

each interface to protect Telnet/SSH access.

	Modification of Existing Standard ACLs
	ACL to protect VTY lines

