Eco-colonies

Šárka Vavrečková

Institute of Computer Science, Faculty of Philosophy and Science
Silesian University in Opava, Czech Republic

sarka.vavreckova@fpf.slu.cz
http://fpf.slu.cz/~vav10ui

WFM’07
April 23–25, 2007
Outline

1 Introduction to Eco-colonies
2 Unformal example
3 Definitions
4 Formal model
5 Generating power
 - Two types of eco-colonies
 - Eco-colonies and colonies
Origin of eco-colonies

- based on colonies with inspiration on eco-grammar systems,
Origin of eco-colonies

- based on colonies with inspiration on eco-grammar systems,
- eco-colonies:
 - simple grammars (agents, components) – as in colonies,
 - self-developing environment – as in eco-grammar systems,
Origin of eco-colonies

- based on colonies with inspiration on eco-grammar systems,
- eco-colonies:
 - simple grammars (agents, components) – as in colonies,
 - self-developing environment – as in eco-grammar systems,
- two types:
 - 0L eco-colonies with one main alphabet (the environment is 0L-scheme) – as in eco-grammar systems,
 - E0L eco-colonies with two alphabets (a main and a terminal, the environment is E0L-scheme) – as in colonies.
Eco-colonies

Eco-colony as a grammar system

= model of a community of cooperating processes, grammar system
Eco-colonies

Eco-colony as a grammar system

= model of a community of cooperating processes, grammar system

- symbols – elements of the alphabet, objects,
Eco-colonies

Eco-colony as a grammar system

= model of a community of cooperating processes, grammar system

- *symbols* – elements of the alphabet, objects,
- *environment* – contains symbols, the environment is self-developing,
Eco-colonies

Eco-colony as a grammar system

= model of a community of cooperating processes, grammar system

- *symbols* – elements of the alphabet, objects,
- *environment* – contains symbols, the environment is self-developing,
- *word* – some of states of the environment,
Eco-colonies

Eco-colony as a grammar system

- = model of a community of cooperating processes, grammar system
 - *symbols* – elements of the alphabet, objects,
 - *environment* – contains symbols, the environment is self-developing,
 - *word* – some of states of the environment,
 - *agents (components)* – cooperating grammars, processes, subjects, working parallelly,
 - *start symbol* – what the agent can process, it looks for this symbol in the environment,
 - *language of the agent* (set of actions) – what the agent can do with its start symbol, the agent replaces it by some word of this language.
Example (motivation)

A

\(aBa, \ bb, \ cBc\)

B

\(AxA\)

A

\(aBa, \ \varepsilon\)

sensors, actuators

sensors, actuators

sensors, actuators

a A x A a d C C b

\(B \rightarrow bB\) \(A \rightarrow A\) \(C \rightarrow c\) \(C \rightarrow cD\) \(d \rightarrow d\) \(b \rightarrow b\) \(D \rightarrow C\) \(a \rightarrow a\) \(x \rightarrow x\)
Example (motivation)

\[aBa, bb, cBc \]

\[AxA \]

\[aBa, \varepsilon \]

Found

Action

Sensors, actuators

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>x</th>
<th>A</th>
<th>a</th>
<th>d</th>
<th>C</th>
<th>C</th>
<th>b</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

\[B \rightarrow bB \quad A \rightarrow A \quad C \rightarrow c \quad C \rightarrow cD \quad d \rightarrow d \]

\[x \rightarrow x \quad c \rightarrow c \quad C \rightarrow cD \quad b \rightarrow b \quad D \rightarrow C \quad a \rightarrow a \]
Example (motivation)

A

\[aBa, bb, cBc \]

action

found

sensors, actuators

B

\[AxA \]

action

found

sensors, actuators

A

\[aBa, \varepsilon \]

action

found

sensors, actuators

\[a \mid A \mid x \mid A \mid a \mid d \mid C \mid C \mid b \]

\[
B \to bB \quad A \to A \\
C \to c \\
c \to c \\
C \to cD \\
d \to d \\
b \to b \\
a \to a \\
D \to C
\]
Example (motivation)

- aBa, bb, cBc
- AxA
- aBa, ε

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>x</th>
<th>A</th>
<th>a</th>
<th>d</th>
<th>C</th>
<th>C</th>
<th>b</th>
</tr>
</thead>
</table>

- $B \rightarrow bB$
- $A \rightarrow A$
- $C \rightarrow c$
- $C \rightarrow cD$
- $d \rightarrow d$
- $x \rightarrow x$
- $c \rightarrow c$
- $b \rightarrow b$
- $a \rightarrow a$
- $D \rightarrow C$
Example (motivation)

\[\text{found} \quad \text{action} \quad \text{found} \quad \text{action} \quad \text{found} \quad \text{action} \]

- Sensors, actuators
- \(aBa, bb, cBc \)
- \(AxA \)
- \(aBa, \varepsilon \)

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>x</th>
<th>A</th>
<th>a</th>
<th>d</th>
<th>C</th>
<th>C</th>
<th>b</th>
</tr>
</thead>
</table>

- \(B \rightarrow bB \)
- \(A \rightarrow A \)
- \(C \rightarrow c \)
- \(C \rightarrow cD \)
- \(d \rightarrow d \)
- \(x \rightarrow x \)
- \(c \rightarrow c \)
- \(b \rightarrow b \)
- \(d \rightarrow d \)
- \(a \rightarrow a \)
- \(D \rightarrow C \)
Example (motivation)

- A: found action, aBa, bb, cBc
- B: found action, AxA
- A: found action, aBa, ε

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>c</th>
<th>B</th>
<th>a</th>
<th>d</th>
<th>c</th>
<th>D</th>
<th>c</th>
<th>D</th>
<th>b</th>
<th>b</th>
</tr>
</thead>
</table>

- $B \rightarrow bB$
- $A \rightarrow A$
- $C \rightarrow c$
- $C \rightarrow cD$
- $d \rightarrow d$
- $b \rightarrow b$
- $D \rightarrow C$
Example (motivation)

A

\[aBa, \ bb, \ cBc \]

found

sensors, actuators

action

B

AxA

found

sensors, actuators

action

A

\[aBa, \ \varepsilon \]

found

sensors, actuators

action

\[
\begin{align*}
A & \rightarrow A \\
B & \rightarrow bB \\
x & \rightarrow x \\
c & \rightarrow c \\
C & \rightarrow c \\
C & \rightarrow cD \\
d & \rightarrow d \\
b & \rightarrow b \\
D & \rightarrow C
\end{align*}
\]
Sárka Vavrečková: Eco-colonies

Unformal example

Example (motivation)

A \rightarrow aBa, bb, cBc

action

found

sensors, actuators

B \rightarrow AxA

action

found

sensors, actuators

A \rightarrow aBa, \varepsilon

action

found

sensors, actuators

a \ x \ c \ B \ a \ d \ c \ D \ c \ D \ b \ b

B \rightarrow bB

A \rightarrow A

c \rightarrow c

C \rightarrow c \ D

a \rightarrow a

b \rightarrow b

D \rightarrow C

d \rightarrow d
Example (motivation)

\[
\begin{align*}
A & \rightarrow A \\
X & \rightarrow X \\
C & \rightarrow c \\
C & \rightarrow cD \\
a & \rightarrow a \\
b & \rightarrow b \\
d & \rightarrow d \\
B & \rightarrow bB \\
C & \rightarrow c \\
C & \rightarrow cD \\
A & \rightarrow A \\
x & \rightarrow x \\
D & \rightarrow C
\end{align*}
\]
Example (formal model)

Agents:

\[A_1 = (A, \{aBa, bb, cBc\}) \]
\[A_2 = (B, \{AxA\}) \]
\[A_3 = (A, \{aBa, \varepsilon\}) \]
Example (formal model)

Agents:

\[A_1 = (A, \{ aBa, bb, cBc \}) \]
\[A_2 = (B, \{ AxA \}) \]
\[A_3 = (A, \{ aBa, \varepsilon \}) \]

Rules in the environment:

\[C \rightarrow cD \]
\[D \rightarrow C \]
\[A \rightarrow A \]
\[d \rightarrow d \]
\[C \rightarrow c \]
\[B \rightarrow bB \]
\[a \rightarrow a \]
\[x \rightarrow x \]
\[b \rightarrow bb \]
\[c \rightarrow c \]
Example (formal model)

<table>
<thead>
<tr>
<th>Agents:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 = (A, {aBa, bb, cBc})$</td>
<td></td>
</tr>
<tr>
<td>$A_2 = (B, {AxA})$</td>
<td></td>
</tr>
<tr>
<td>$A_3 = (A, {aBa, \varepsilon}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rules in the environment:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \rightarrow cD$</td>
<td>$D \rightarrow C$</td>
</tr>
<tr>
<td>$C \rightarrow c$</td>
<td>$B \rightarrow bB$</td>
</tr>
<tr>
<td>$b \rightarrow bb$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alphabets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabet of the environment: $V = {A, B, C, D, a, b, c, d, x}$</td>
<td></td>
</tr>
<tr>
<td>Terminal alphabet: $T = {a, b, c, d, x}$</td>
<td></td>
</tr>
</tbody>
</table>
Definitions of eco-colonies

Definition (E0L eco-colony) of degree \(n \), \(n \geq 1 \), is an \((n + 2)\)-tuple \(\Sigma = (E, A_1, A_2, \ldots, A_n, w_0) \), where

- \(E = (V, T, P) \) is E0L scheme, where
 - \(V \) is a finite non-empty alphabet,
 - \(T \) is a non-empty terminal alphabet, \(T \subseteq V \),
 - \(P \) is a finite set of E0L rewriting rules over \(V \),
- \(A_i = (S_i, F_i) \), \(1 \leq i \leq n \), is the \(i \)-th agent, where
 - \(S_i \in V \) is the start symbol of the agent,
 - \(F_i \subseteq (V - \{S_i\})^* \) is a finite set of action rules of the agent (the language of the agent),
- \(w_0 \) is the axiom.
Definitions of eco-colonies

Definition (0L eco-colony)
of degree \(n, n \geq 1 \), is an \((n + 2)\)-tuple \(\Sigma = (E, A_1, A_2, \ldots, A_n, w_0) \), where
- \(E = (V, P) \) is 0L scheme, where
 - \(V \) is a finite non-empty alphabet,
 - \((T = V, \text{not used ind this definition}) \),
 - \(P \) is a finite set of 0L rewriting rules over \(V \),
- \(A_i = (S_i, F_i), 1 \leq i \leq n \), is the \(i \)-th agent, where
 - \(S_i \in V \) is the start symbol of the agent,
 - \(F_i \subseteq (V - \{S_i\})^* \) is a finite set of action rules of the agent
 (the language of the agent),
- \(w_0 \) is the axiom.
Definitions of derivation steps

Definition (Weakly competitive parallel derivation step wp)

in an eco-colony $\Sigma = (E, A_1, A_2, \ldots, A_n, w_0)$ is $\alpha \xrightarrow{\text{wp}} \beta$, where

- $\alpha = \gamma_0 S_{i_1} \gamma_1 S_{i_2} \gamma_2 \ldots \gamma_{r-1} S_{i_r} \gamma_r$, $r > 0$,
- $\beta = \gamma'_0 f_{i_1} \gamma'_1 f_{i_2} \gamma'_2 \ldots \gamma'_{r-1} f_{i_r} \gamma'_r$, $A_{i_k} = (S_{i_k}, F_{i_k})$, $f_{i_k} \in F_{i_k}$, $1 \leq k \leq r$ (the agent A_{i_k} is active in this derivation step),
- $\{i_1, i_2, \ldots, i_r\} \subseteq \{1, 2, \ldots, n\}$, $i_k \neq i_m$ for every $k \neq m$, $1 \leq k, m \leq r$,
- for every symbol $S \in V$ if $|\gamma_0 \gamma_1 \ldots \gamma_r|_S > 0$ then every agent with the start symbol S must be active (if agents can work they must work),
- $\gamma_k \xrightarrow{E} \gamma'_k$, $\gamma_k \in V^*$, $0 \leq k \leq r$, is the derivation step of the scheme E.
Definitions of derivation steps

Definition (derivation step \(ap \) – all are working parallely)

In an eco-colony \(\Sigma = (E, A_1, A_2, \ldots, A_n, w_0) \) is \(\alpha \xrightarrow{ap} \beta \), where

- \(\alpha = \gamma_0 S_{i_1} \gamma_1 S_{i_2} \gamma_2 \cdots \gamma_{n-1} S_{i_n} \gamma_n \),
- \(\beta = \gamma'_0 f_{i_1} \gamma'_1 f_{i_2} \gamma'_2 \cdots \gamma'_{n-1} f_{i_n} \gamma'_n \), \(A_{i_k} = (S_{i_k}, F_{i_k}) \), \(f_{i_k} \in F_{i_k} \), \(1 \leq k \leq n \),
- \(\{i_1, i_2, \ldots, i_n\} = \{1, 2, \ldots, n\} \) (every agent works in every derivation step),
- \(\gamma_k \xrightarrow{E} \gamma'_k \), \(\gamma_k \in V^* \), \(0 \leq k \leq n \), is the derivation step of the scheme \(E \).
Definition of language

Definition

Let Σ be an 0L eco-colony, $\Sigma = (E, A_1, A_2, \ldots, A_n, w_0)$. The language generated by the type of derivation x, $x \in \{wp, ap\}$ in Σ is

$$L(\Sigma, x) = \{ w \in V^* \mid w_0 \xrightarrow{\sigma}^* w \}$$

Definition

Let Σ be an E0L eco-colony, $\Sigma = (E, A_1, A_2, \ldots, A_n, w_0)$. The language generated by the type of derivation x, $x \in \{wp, ap\}$ in Σ is

$$L(\Sigma, x) = \{ w \in T^* \mid w_0 \xrightarrow{\sigma}^* w \}$$
Example

\[\Sigma = (E, A_1, A_2, AbB), \text{ where} \]
\[E = (\{A, B, a, b\}, \{a, b\}, \{a \rightarrow a, b \rightarrow bb\}), \]
\[A_1 = (A, \{aB, \varepsilon\}), \]
\[A_2 = (B, \{aA, \varepsilon\}) \]
Example

\[\Sigma = (E, A_1, A_2, AbB), \text{ where} \]
\[E = (\{A, B, a, b\}, \{a, b\}, \{a \rightarrow a, b \rightarrow bb\}), \]
\[A_1 = (A, \{aB, \varepsilon\}), \]
\[A_2 = (B, \{aA, \varepsilon\}) \]

\[AbB \xrightarrow{ap} aBb^2aA \xrightarrow{ap} a^2Ab^4a^2B \xrightarrow{ap} a^3Bb^8a^3A \xrightarrow{ap} \]
\[\xrightarrow{ap} a^4Ab^{16}a^4B \xrightarrow{ap} a^5Bb^{36}a^5A \xrightarrow{ap} \ldots \]

\[AbB \xrightarrow{wp} aBb^2aA \xrightarrow{wp} a^2Ab^4a^2B \xrightarrow{wp} a^2b^8a^3A \xrightarrow{wp} a^2b^{16}a^4B \xrightarrow{wp} \]
\[\xrightarrow{wp} a^2b^{36}a^5B \xrightarrow{wp} \ldots \]
Example

\(\Sigma = (E, A_1, A_2, AbB) \), where
\(E = (\{A, B, a, b\}, \{a, b\}, \{a \rightarrow a, b \rightarrow bb\}) \),
\(A_1 = (A, \{aB, \varepsilon\}) \),
\(A_2 = (B, \{aA, \varepsilon\}) \)

\(AbB \xrightarrow{ap} aBb^2 aA \xrightarrow{ap} a^2 Ab^4 a^2 B \xrightarrow{ap} a^3 Bb^8 a^3 A \xrightarrow{ap} \)
\(\xrightarrow{ap} a^4 Ab^{16} a^4 B \xrightarrow{ap} a^5 Bb^{36} a^5 A \xrightarrow{ap} \ldots \)

\(AbB \xrightarrow{wp} aBb^2 aA \xrightarrow{wp} a^2 Ab^4 a^2 B \xrightarrow{wp} a^2 b^8 a^3 A \xrightarrow{wp} a^2 b^{16} a^4 B \xrightarrow{wp} \)
\(\xrightarrow{wp} a^2 b^{36} a^5 B \xrightarrow{wp} \ldots \)

Generated languages:
\(L(\Sigma, ap) = \left\{ a^n b^{2^n} a^n \mid n \geq 0 \right\} \)
\(L(\Sigma, wp) = \left\{ a^i b^{2^n} a^j \mid n \geq 0, \ 0 \leq i, j \leq n \right\} \)
Notation

\(0EC_x \)
\(x \in \{wp, ap\} \) class of 0L eco-colonies with \(x \) type of derivation

\(EEC_x \)
\(x \in \{wp, ap\} \) class of E0L eco-colonies with \(x \) type of derivation

\(COL_x \)
\(x \in \{b, t, wp, sp\} \) class of colonies with the \(x \) type of derivation

\(COL_T^x \)
\(x \in \{b, t, wp, sp\} \) class of colonies with the \(x \) type of derivation, \(V = T \)
Results proved in the paper

Theorem

\[0 \mathcal{E}_{C_{ap}} \subset \mathcal{E}_{E_{C_{ap}}} \] (1)
0EC_{ap} \subset EEC_{ap}.

The relation 0EC_{ap} \subseteq EEC_{ap} is trivial, 0L eco-colonies are special type of E0L eco-colonies (for V = T).

\[L_1 = \{ a^{2^n} \mid n \geq 1 \} \]

This language is generated by the E0L eco-colony \(\Sigma = (E, A_1, A_2, UVa) \), where
\[E = (\{a, U, V\}, \{a\}, \{a \rightarrow aa, U \rightarrow U, V \rightarrow V\}) \],
\[A_1 = (U, \{V, \varepsilon\}) \],
\[A_2 = (V, \{U, \varepsilon\}) \].

\[UVa \xrightarrow{ap} VUa^2 \xrightarrow{ap} UVa^4 \xrightarrow{ap} VUa^8 \xrightarrow{ap} UVa^{16} \xrightarrow{ap} \ldots \xrightarrow{ap} a^{2^n} \]

L_1 is not generated by any 0L eco-colony with ap derivation (see the proof of Theorem 1 in the paper).
Results proved in the paper

Theorem

\[xEC_y - COL_z \neq \emptyset \] \hspace{1cm} (2)

where \(x \in \{0, E\} \), \(y \in \{wp, ap\} \), \(z \in \{b, t, wp, sp\} \).
Results proved in the paper

\(xEC_y \neq COL_z \).

We use the language

\[
L_2 = \left\{ cd a^{2n} b^{2n} \mid n \geq 0 \right\} \cup \left\{ dca^{2n+1} b^{2n+1} \mid n \geq 0 \right\}
\]

This language can be generated by the eco-colony (ap as well as wp) \(\Sigma = (E, A_1, A_2, cda) \), where \(E = (\{a, b, c, d\}, \{a \rightarrow aa, b \rightarrow bb, c \rightarrow c, d \rightarrow d\}) \), \(A_1 = (c, \{d\}) \), \(A_2 = (d, \{c\}) \).

\[
cdab \Rightarrow dca^2b^2 \Rightarrow cda^4b^4 \Rightarrow dca^8b^8 \Rightarrow cda^{16}b^{16} \Rightarrow \ldots
\]

\(L_2 \) is not generated by any colony with \(b, t, wp, sp \) derivation (see the proof of Theorem 2 in the paper).
Results proved in the paper

Theorem

\[COL_x - 0EC_{wp} \neq \emptyset, \quad x \in \{b, t, wp, sp\} \]

(3)
Results proved in the paper

\[
\text{COL}_x - 0\text{EC}_{wp} \neq \emptyset.
\]

The language

\[
L_3 = \{ a^{15-2n} b^n c b^n d \mid 0 \leq n < 7, n \text{ is even} \} \\
\cup \{ a^{15-2n} b^n d b^n c \mid 0 < n \leq 7, n \text{ is odd} \}
\]

is a finite language, so \(L_3 \in \text{COL}_x \) for \(x \in \{b, t, wp, sp\} \).

This language is not in \(0\text{EC}_{wp} \) (see the proof of Theorem 3 in the paper).
Results proved in the paper

Theorem

\[COL_x - 0EC_{ap} \neq \emptyset, \quad x \in \{b, t, wp, sp\} \] (4)
Results proved in the paper

\[\text{COL}_x - 0\text{EC}_{ap} \neq \emptyset. \]

The language

\[L_4 = \{a, aa\} \]

is not generated by any 0L eco-colony. But this language is finite, so \(L_4 \in \text{COL}_x \) for \(x \in \{b, t, wp, sp\} \) (see the proof of Theorem 4 in the paper).
Results proved in the paper

Theorem

\[\text{COL}_b \subset \text{EEC}_{ap} \] (5)
Theorem

\[\text{COL}_b \subseteq \text{EEC}_{ap} \] \hspace{1cm} (5)

The proof can be found in the paper.
We demonstrate the construction of the proof on the colony generating this language:

\[L_5 = \left\{ waw^R a^i \mid w \in \{0, 1\}^*, \ i > 0 \right\} \]
Example: $L_5 = \{waw^Ra^i \mid w \in \{0, 1\}^*, \; i > 0\}$

Colony: $\mathcal{C} = (\{S, H, H', A, A', 0, 1, a\}, \{0, 1, a\}, \mathcal{R}, S)$
the set of components \mathcal{R} is
$\mathcal{R} = \{ (S, \{HA\}), (H, \{0H'0, 1H'1, a\}), (A, \{aA', a\}), (H', \{H\}), (A', \{A\}) \}
Example: \(L_5 = \{ w a^i w^R | w \in \{0,1\}^*, \ i > 0 \} \)

Colony: \(C = (\{S, H, H', A, A', 0, 1, a\}, \{0, 1, a\}, \mathcal{R}, S) \)
the set of components \(\mathcal{R} \) is
\(\mathcal{R} = \{ (S, \{HA\}), (H, \{0H'0, 1H'1, a\}), (A, \{aA', a\}),
(H', \{H\}), (A', \{A\}) \} \)

Agens work but do not make the word (longer axiom),
components \(\Rightarrow \) rules in the environment.

E0L eco-colony with ap derivation: \(\Sigma = (E, A_1, A_2, BCS) \),
\(E = (\{B, C, S, H, H', A, A', 0, 1, a\}, \{0, 1, a\}, P) \),
\(A_1 = (B, \{C, \varepsilon\}) \), \(A_2 = (C, \{B, \varepsilon\}) \),
the set of rules \(P \) in the environment is
\(P = \{ H \rightarrow H|0H'0|1H'1|A, \ H' \rightarrow H'|H, \ 1 \rightarrow 1, \ a \rightarrow a,
A \rightarrow A|aA'|a, \ A' \rightarrow A'|A, \ 0 \rightarrow 0, \ S \rightarrow S|HA \} \).
Results proved in the paper

Corollaries

1. \(xEC_y - COL_T^z \neq \emptyset \)
 where \(x \in \{0, E\} \), \(y \in \{wp, ap\} \), \(z \in \{b, t, wp, sp\} \).

2. The set of languages \(0EC_{wp} \) is incomparable to the sets of languages \(COL_b, COL_t, COL_{wp} \) and \(COL_{sp} \).

3. \(COL_b^T \subset EEC_{wp} \), \(COL_{wp}^T \subset EEC_{wp} \)

4. \(COL_b^T \subset EEC_{ap} \)

5. \(COL_b^T \subset EEC_{ap} \)

Follow from the previous results.
Thank you for your attention.